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ABSTRACT 
 
Current robot platforms available for research are too  
expensive for educational use in reinforcement learning. 
We develop a low cost Q-Robot with two degrees of 
freedom(DoF) with remote control(RC) servos and 3D 
printed parts. The robot can learn to craw from scratch 
within less than 20 min using Q learning algorithm in 
reinforcement learning. We validate the platform with 
reinforcement learning experiments and provide baseline 
results on a set of benchmark tasks. All the training and 
learning task is on-board. The optimal solution is a 
periodic orbit in the state space consisting of only 36 
states with the discrete servo angle as the state variable.  
 
Keywords: reinforcement learning, locomotion control, 
robotic arm, robotics, Q learning. 
 

1. INTRODUCTION 
 
The field of reinforcement learning (RL), derived from 
the root of “dynamical programming” has advanced 
significantly in recent years, with numerous success 
stories in solving challenging control problems[1-3]. 
This is largely due to the availability of simulators that 
allow for rapid testing of algorithmic performance, which 
are inexpensive, fast, and can be run in parallel. However, 
simulators often make unrealistic assumptions about the 
world. In another context, animals are known to learn 
various locomotion movement in their lifespan to adapt 
to their environments. For example, soaring birds often 
rely on ascending thermal plumes in the atmosphere as 
they search for prey or migrate across large distances. RL 
has been demonstrated in training a glider to fly and 
navigate in the field[4-5]. RL has also been demonstrated 
to optimize the parameters of central pattern generator  
model using policy gradient method in robotic fish 
swimming[6]. Some insects are known to be able to learn 
to walk within a short period of time when they are 
born[7]. The researchers in Aalto University, Finland,  
develop and validate RealAnt, a physical version of the 
popular Ant benchmark available in OpenAI Gym. 
RealAnt robot platform from Ote Robotics is designed 

for real-world reinforcement learning research and 
development[8].  

The implementation of reinforcement learning has its 
root on the dynamic programming and suffers from the 
famous “ curve of dimensionality” according to Richard 
Bellman as the size of the state space is getting larger[1]. 
To circumvent this, approximation scheme such as a deep 
neural network is used to provide an approximation 
scheme for the Q table with much smaller number of 
parameters[2-3]. In this work, we propose that the lookup 
table representation of the reward function should not be 
overlooked whenever the problem is “easy” in the sense 
that the state space is of moderate size but an exact model 
is not available or too complex to be used[2]. The exact 
model here refers to the crawling dynamics approximated 
as the stochastic system transition probabilities(Markov 
chain). Specifically, we demonstrated a Q-learning 
algorithm[9] with a crawling robot with two servo motors 
with only 36 states and 4 actions with Arduino UNO and 
provide the detailed profiling of the learning process.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Mechanical design of the Q robot. 

 
2. Q ROBOT 

 
Our Q robot is developed with similar motivation as Real 
Ant but it has one two degree of freedom but the power 
consumption is 3 Watt for the servo motor operation and  
the power for computation alone is only ~ 10 mW from 
the micro controller. Because aggressive exploratory 
actions taken by RL algorithms can easily damage the 
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components of a robot[7]. Plastic gears in remote 
control(RC) servos or naively designed 3D printed parts 
can easily break during random exploration and learning. 
In Q robot, they can be replaced easily at low cost.  
 
2.1. Mechanical Design  
To be brief, Q robot  weights ~ 340 g(Fig. 1 and Fig. 2). 
The arm consists of two high torque servos. The main 
body consists of a 3D printed housing of dimensional 
12.5 cm(l) x 7cm(w) x 8.5 cm(h). The crawling robot uses 
one arm consisting of two servo motor (MG996R, 180 
deg). The ultrasonic sensor(SR04) is mounted on the 
robot. The carpet of length ~ 1 m is preferred and is made 
of synthetic rubber. The tip of the arm is made of sand 
paper with specific roughness. The choice of the 
combination of the tip and the carpet is critical factor of 
successful training and learning. Also, a dummy weight 
of the order ~ 100 g is placed inside the main body of Q 
robot to shift the center of the mass in the correct position 
to provide stability of the robot during crawling.   

There are several important time scales. The most 
important one is the delay troll for the robot to roll over 
once the command for the servo is sent out.  

 
2.2 Electronics components  

The microcontroller of the robot is Arduino UNO, 
which has the maximal SRAM memory of 2kbyte. In 
particular, the most demanding part of the Q learning 
algorithm uses a look-up table of 144 floating numbers. 
Two lithium ion batteries with capacity of 1200 mAh and 
7.4V is sufficient to power up the Q robot. The voltage is 
regulated to 5 V by a voltage regular LM7805. A 
ultrasonic sensor (SR05) is mounted on the main body to 
provide the distance measurement from a reference wall. 
The maximal distance is ~ 3 meter and the resolution in 
distance is 1 cm. The measured distance from the 
ultrasonic sensor between the wall and the robot is used 
as cumulative reward. When Q robot is up and running, 
the data is transmitted via a wireless communication 
module nrf 24. An external laptop computer equipped 
with another micronctoller board (Arduino UNO) with 
another nrf 24 is used to receive the data with a python 
code to convert the sent data into CSV file format. The 
usage of the external computer is limited to data 
communicaton and the external computer is not involved 
in the learning process such as computing the updated 
value of Q or finding the optimal action.  

 
 
2.3 Description of the implementation of Q learning 
algorithm  
 
Briefly, Q-learning is a reinforcement learning algorithm 
that tries to find optimal actions by learning a state-action 
value function Q[s,a]. The underlying idea is to use 
system transition probabilities or the Markov chain to 
model the dynamics of the crawling robot. The state-
action value function, or simply, is a look-up table having 
rows as states, actions as columns, and values as 

entries. Thus if the value function is known, then the 
optimal policy is simply to select the action having the 
highest value for the current state.   
 
 a’ = argmax a’ Q(s, a)     (1) 
 
Four possible actions, denoted by ai (i=0,1,2,3) are 
defined as  
 
Action 0 (a0) : increment of angle of servo 1 by 4 degree.  
Action 1 (a1) : increment of angle of servo 1 by -4 degree.  
Action 2 (a2) : increment of angle of servo 2 by 14 
degree.  
Action 3 (a3) : increment of angle of servo 2 by -14 
degree.  

 
The optimal solution of the Markov decision problem 

is a sequence of actions that move the agent forward at 
an efficient rate. The main loop consists of getting the 
distance as reward from ultrasonic sensor, getting 
optimal action from Q by searching for the maximal 
value, and  updating the setpoint of the servos. The 
update rule for Q[s][a] is on policy version of Q learning 
rule[5].  
 
Q(s,a)←Q(s,a)+η(r +γ maxa Q(s′,a′)−Q(s,a))              (2) 
 
 η is the learning rate (η =0.1) and r is the immediate 
reward.  g is the discount factor (g =0.75). 

To explore, ε-greedy search where with probability ε, 
we choose one action uniformly randomly among all 
possible actions, namely, explore, and with probability 1 
− ε, we choose the best action, namely, exploit. In the 
code, we let probability ε to decrease exponentially over 
time. Typically, we use  ε = exp(-t/t )  with t = 1 minute. 
The typical learning time of ~10 minutes corresponds to 
3000 updates with η =0.1.  

For Q robot of the typical size described here, t roll = 
0.2 sec. In general, this roll over time depends on the 
mass and size of the robot if we decide to use robot of 
different scale. There is another time scale for the servo 
to reach its set angle. The time constant is 4.5 ms * delta 
theta. Delta theta  = ( maximal angle – minimal angle )/ 
N. To give  a specific number, 18 ms is need for 4 deg. 
In our work, we use N=6 and q1max = 102 deg, q1min=82 
deg,  q2max=160 deg, q2min=90 deg. These values 
correspond to the boundary of the gridworld state space. 
The action that leads the servo angle out of this range is 
nullified.  

 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 

 

 

 

 

Fig. 2. Schematics of learning experiment. a. Definition 
of state variable b. Distance as measured from ultrasonic 

sensor is used as the cumulative reward in Q learning 
algorithm c. Snapshot of Q robot learning to walk on a 

carpet 

 
4. RESULTS AND DISCUSSION 

 
The Q robot is able to learn to crawl in typically less than 
20 minutes. In a typical run of 10 trials, we are able to 
record the details of the learning process. A sample of 
“optimal solution” is shown in Fig. 3. Fig 3b and Fig. 3c 
are an expanded view of the transition from learning to 
the learned optimal solution of crawling. The distance as 
the cumulative reward has different slope in the “learned” 
state from the “learning-in-progress” state. The 
movement speed in the learned state is ~ 0.5 cm/sec 
estimated by fitting the distance versus time data by a 
linear curve. The learned optimal solution in Fig. 3c 
shows a periodic pattern occasionally disrupted by noise. 
Note that because the number of action is only four, we 
are able to directly visualize such a pattern. Actions are 
represented as integers from 0 to 3. When the 
corresponding trajectory plotted in state space, the 
optimal solution is a sequence of six actions, i.e.,  a3 -> 
a1->a1->a2 -> a0-> a0. Such a sequence will result in a 
closed orbit in the state space schematically shown in Fig. 
4. Previous simulation work on a two-arm link crawling 
robot based on genetic algorithm has been done and 
reveals the optimal solution is periodic[10,11]. 

Note that the state space is 2D rectangular gridworld. 
At each cell, all the actions correspond to movement in 
up, down, left, and right. This is reminiscent of the 
gridworld examples in the classic textbook of RL by 
Sutton and Barto[3]. We do observe some interesting 
cases that when a large noise spike from the ultrasonic 
sensor disrupt the learning, the robot will return back to 
“learning-in-progress”. Amazingly, the robot is able to 
recover and find the optimal solution again after a period 
of time.  

Most research on robotics is conducted on industrial 
robots that are very expensive, costing thousands of 
dollars. This is not very affordable to all researchers, let 
alone educational use[8]. Our development is much 
along the line of the RealAnt robot[8]. We would like to 
make a comparison with the RealAnt. The fully 
assembled one of the RealAnt costs around ~$410 in 
materials and power supply needed is 12 V 5A. (The 
estimated the computation power is around ~10 Watt.) 
In contrast, our Q robot costs around USD$100. When 
all the components is available, our robot can be 
assembled in less than 1 hr with no calibration on 
ultrasonic sensor. Also, we do not rely on camera-based 
image process method for pose estimation and therefore 
the power consumption is primarily due to the servos 
that produce the movement.  

We have previously used a similarly constructed 
version of Q robot in educational settings. In particular, 
we have solicited five volunteers and provide them with 
a simple instruction. All of them can do hands-on 
experimentation for a representative experiments, e.g., to 
test the capability of Q robot’s walking on different 
carpets. 

We can also comment on the computation loading of 
an enhanced look-up table representation of Q learning 
with four servo motors (mechanical degrees of freedom) 
and such a code only uses up to ~20 kB of flash memory 
with 64 state and 8 actions to store Q value look-up table 
in Tweensy 4.0 microcontroller and can be potentially 
implemented in the Q robot with four servo motors (two 
arms).     

4. CONCLUSION 
 
Reinforcement learning of a crawling robot with two 
servo motors is successfully demonstrated. Explicit and 
detailed profiling of the learning process can be obtained. 
While our initial experiment focuses on proof-of-concept 
experimentation in educational settings and the prototype  
robot is relatively simple.  We are investigating whether 
or not such a straightforward look up table representation 
 is applicable if we increase of number of mechanical 
degrees of freedom.  We expect such implementation will 
open up new possibilities in robots of few DoFs such as 
multi-legged microbots or inworm crawling robots with 
limited computational resource[12-17].  
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Fig. 3. Learning process (a) Distance as cumulative 
reward versus time (b) Expanded view of data in (a) (c) 
Action versus time in (b). Action is represented as an 

integer between 0 and 3   
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Fig. 3. The learning curve. (a) distance versus time (b) 
distance versus time during a transition from “learning 

in progress” to the “learned” optimal solution (c) Action 
versus time.   

 

 

 

 

 

 

 

Fig. 4. The trajectory in the state space corresponding to 
the optimal solution  
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